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Impact phenomena of nanoclusters subject to thermal fluctuations are numerically investigated. From the
molecular dynamics simulation for colliding two identical clusters, it is found that the restitution coefficient for
head-on collisions has a peak at a colliding speed due to the competition between the cohesive interaction and
the repulsive interaction of colliding clusters. Some aspects of the collisions can be understood by the theory
of Brilliantov et al. �Phys. Rev. E 76, 051302 �2007��, but many aspects are found from the simulation. In
particular, we find that there are some anomalous rebounds in which the restitution coefficient is larger than
unity. The phase diagrams of rebound processes against impact speed and the cohesive parameter can be
understood by a simple phenomenology.
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I. INTRODUCTION

Inelastic collisions are the process that a part of initial
macroscopic energy of colliding bodies is distributed into the
microscopic degrees of freedom. This irreversible process of
head-on collisions may be characterized by the restitution
coefficient which is the ratio of the normal rebound speed to
the normal impact speed. Although it was generally believed
that the restitution coefficient is a material constant, modern
experiments and simulations have revealed that the restitu-
tion coefficient decreases with the increase of impact veloc-
ity �1–4�. For example, in the case of collisions between icy
particles, we can easily find the monotonic decrease of the
restitution coefficient against impact velocity without any flat
region �5�. The dependence of the restitution coefficient on
the low impact velocity is theoretically treated by the quasi-
static theory �6–10�. In Ref. �6�, Kuwabara and Kono per-
formed impact experiments by the use of a pendulum of
various materials to validate their theoretical prediction. On
the other hand, the dependence of the restitution coefficient
on the high impact velocity is treated by the dimensional
analysis based on plastic collisions �11�. From the dimen-
sional analysis, the relationship between the restitution coef-
ficient e and the impact velocity V becomes e�V−1/4, which
coincides with experimental results by the use of a steel ball
and blocks of various materials such as hard bronze and
brass �1,3,11�. We also recognize that the restitution coeffi-
cient can be less than unity for head-on collisions without
any introduction of explicit dissipation, because the macro-
scopic inelasticities originate in the transfer of the energy
from the translational mode to the internal modes such as
vibrations �7,12,13�.

Although it is believed that the restitution coefficient for
head-on collisions is smaller than unity, the restitution coef-
ficient can be larger than unity in oblique collisions �14–16�.
For example, Louge and Adams observed such an anomalous
impact in which the restitution coefficient is larger than unity
in oblique collisions of a hard aluminum oxide sphere onto a

thick elastoplastic polycarbonate plate in which the restitu-
tion coefficient increases monotonically with the increase of
the magnitude of the tangent of the angle of incidence �14�.
They explained that this phenomena can be attributed to the
change in rebound angle resulting from the local deformation
of the contact area between the sphere and the plate, which
causes the increase in the normal component of the rebound
velocity against the collision plane. The present authors per-
formed a two-dimensional impact simulation with an elastic
disc and an elastic wall consisted of nonlinear spring net-
work to reproduce the anomalous impacts. They also ex-
plained the mechanism to appear large restitution coefficient
based on a simple phenomenology by taking into account the
local surface deformation. �15�

The static interaction between macroscopic granular par-
ticles is characterized by the Hertzian theory �17,18� of the
elastic repulsive force as well as the dissipative force which
is proportional to relative speed of colliding two particles.
The total force acting between granular particles in contact is
assumed to be a combination of the elastic repulsive force
and the dissipative force in the quasistatic theory, with which
many aspects of the inelastic collisions for such granular
particles can be understood. This theory can reproduce the
restitution coefficient as a function of the colliding speed
observed in experiments and simulations �6,8,19�.

Although the repulsive interaction becomes dominant for
collisions of large bodies, cohesive interactions such as van
der Waals force and electrostatic force play important roles
for small clusters of the nanoscale �20–22�. Recently, Bril-
liantov et al. have developed the quasistatic theory for in-
elastic collisions to explain the relation between the colliding
speed and the restitution coefficient for cohesive collisions
�23�. The result of an experimental result of collisions of
macroscopic particles with the cohesive interaction is consis-
tent with the theory �24�.

For molecular dynamics simulations of small clusters,
many empirical potentials are used to mimic the interaction
between various atoms �25�. Among them, most commonly
used one is the Lennard-Jones potential*kuninaka@phys.chuo-u.ac.jp
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which approximates the interaction between inert gas atoms
such as argons well �25,26�. Here, rij is the distance between
two atoms labeled by i and j, respectively. � and � are the
energy constant and the characteristic diameter, respectively.
In this potential, the second term on the right hand side rep-
resents the cohesive interaction which is originated from van
der Waals interaction.

Dynamics of nanoclusters are extensively investigated
from both scientific and technological interests. There are a
lot of studies on cluster-cluster and cluster-surface collisions
based on the molecular dynamics simulation �27–31�. We
observe variety of rebound processes in such systems caused
by the competition between the attractive interaction and the
repulsive interaction of two colliding bodies. Binary colli-
sions of identical clusters cause coalescence, scattering, and
fragmentation depending on the cluster size and the impact
energy �27,28�. On the other hand, cluster-surface collisions
induce soft landing, embedding, and fragmentation �31�. The
attractive interaction plays crucially important roles in such
colliding processes.

However, the attractive interaction may be reduced in the
case of some combinations of the two interacting objects and
the relative configuration of colliding molecules �32�. Aw-
asthi et al. carried out the molecular dynamics simulation for
collisions of Lennard-Jones clusters onto surfaces to simulate
the collision of a Bi cluster onto a SiO2 surface �33�. They
introduced a cohesive parameter to characterize the magni-
tude of attraction and investigate the rebound behavior of the
clusters. Similarly, recent papers have reported that surface-
passivated Si nanoclusters exhibit elastic rebounds on Si sur-
face due to the reduction of the attractive interaction between
the surfaces �34,35�. These results suggest that nearly repul-
sive collisions really exist even in small systems.

In the case of purely repulsive collisions between two
identical nanoclusters, we have already reported that the re-
lation between colliding speed and the restitution coefficient
may be described by the quasistatic theory for inelastic im-
pacts, though the restitution coefficient exceeds unity for
small impact speed �36,37�. In addition, on the basis of the
distribution function of macroscopic energy loss during col-
lision, we have shown that our numerical results can be ap-
proximated by the fluctuation relation for inelastic impacts
�36�.

The aim of the present paper is to study statistical prop-
erties in binary head-on collisions of identical nanoclusters.
In particular, we numerically investigate the effects of attrac-
tive interaction on the restitution coefficient in rebound pro-
cesses. The organization of this paper is as follows. In the
next section, we introduce our numerical model of colliding
nanoclusters and the setup of our simulation. In Sec. III, we
summarize the results of our simulation. In Sec. IV, we
mainly discuss the system size dependence of our results. In
Sec. V, we summarize our results. Appendixes A–C treat the
calculation of the surface tension, the technical calculation
on the system size dependence of the restitution coefficient,

and the stability of the spherical shape of a elastic droplet,
respectively.

II. MODEL

Let us introduce our numerical model. Our model consists
of two identical clusters, each of which is spherically cut
�SC� from a face-centered cubic �Fcc� lattice of “atoms.” We
typically use 682 atoms systems which are 13 layers SC-
Fcc’s. The system size dependence will be discussed in Sec.
IV. Here, we list the relation between the number of atoms
and the number of layers in one cluster in Table I. The clus-
ters have facets due to the small number of atoms �Fig. 1�.
All the atoms in each cluster are bound together by the
Lennard-Jones potential U�rij� in Eq. �1�. When we regard
the atom as argon, the values of the constants become �
=1.65�10−21 J and �=3.4 Å, respectively �25�.

Henceforth, we label the upper and the lower clusters as
Cu and Cl, respectively. We assume that the interactive po-
tential between the atom k on the lower surface of Cu and the
atom l on the upper surface of Cl is given by

��rkl� = 4��� �

rkl
�12

− c� �

rkl
�6� , �2�

where rkl is the distance between the surface atom k and
atom l. We introduce the cohesive parameter c to character-
ize the attraction between the atoms of different clusters �33�.

TABLE I. Relation between numbers of layers and atoms.

Number of layers Number of atoms

3 12

5 42

7 135

9 236

11 433

13 682

15 1055

17 1466

Z

0

C

C
u

l

FIG. 1. �Color online� A typical situation of our simulation of
two colliding clusters. Each of them contains 682 “atoms” which
are bound by the Lennard-Jones potential.
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The procedure of our simulation is as follows. As the
initial condition of simulation, the centers of mass of Cu and
Cl are placed along the z-axis with the separation �c between
the surfaces of Cu and Cl. The initial velocities of the “at-
oms” in both Cu and Cl obey Maxwell-Boltzmann distribu-
tion with the initial temperature T. The initial temperature is
set to be T=0.02� in our simulations. The sample average is
taken over different sets of initial velocities governed by the
Maxwell-Boltzmann velocity distribution for atoms.

To equilibrate the clusters, we adopt the velocity scaling
method �38,39� and perform 2000 steps simulation for the
relaxation to a local equilibrium state. Here let us check the
equilibration of the total energy in the initial relaxation pro-
cess. Figure 2�a� is the time evolution of the kinetic tempera-

ture of Cu, where T̄ denotes the scaled temperature by the
unit �. This figure shows the convergence of temperature to
the desired temperature T=0.02�. On the other hand, Fig.
2�b� is the probability density distribution of speed of “at-
oms� in Cu when the equilibration process is over, where v̄
denotes the scaled velocity for “atom� by the unit 	� /m. The
solid curve in Fig. 2�b� shows the probability density distri-
bution of speed vi of “atoms” indexed by i in equilibrium

��vi� = 4�� m

2�kT
�3/2

vi
2 exp�−

m

2kT
vi

2� �3�

with T=0.02�. This agreement shows that the upper cluster
Cu is equilibrated during the equilibration process.

After the equilibration, we give translational velocities to
Cu and Cl to make them collide against each other. The rela-
tive speed of impact ranges from V=0.02	� /m to V
=0.6	� /m. Here, the characteristic speed is the thermal ve-
locity for one “atom” 	T /m, where m is the mass of each
atom. This situation might correspond to the sputtering pro-
cess or collisions of interstellar dusts or atmospheric dusts.
Although it is not easy to control the velocity of colliding
clusters in real nanoscale experiments, the effects of thermal
fluctuation to the center of mass of each cluster might be
negligible if clusters are flying in vacuum.

Numerical integration of the equation of motion for each
atom is carried out by the second order symplectic integrator
with the time step dt=1.0�10−2� /	� /m. To reduce compu-
tational costs, we introduce the cut-off length �c=2.5� of the
Lennard-Jones interaction, which sometimes affects the en-
ergy conservation of a system although the Hamiltonian of
the system is conserved. We have checked that the rate of

energy conservation, 
E�t�−E0
 / 
E0
, is kept within 10−5 with
the cutoff length �c=2.5�, where E0 is the initial energy of
the system and E�t� is the energy at time t. In general, the
value between 3�	�c	4� is used for the energy conserva-
tion about 
E�t�−E0
 / 
E0
�10−5.

We let the angle around z- axis, 
z, be 
z=0 when the two
clusters are located mirror-symmetrically with respect to z
=0. In most of our simulation, we set 
z at 
z=0 as the initial
condition. The dependency on 
z will be shown in the next
section.

III. RESULTS OF OUR SIMULATION

A. Relation between impact speed and restitution coefficient

Figures 3�a� and 3�b� display, respectively, the magnified
sequential plots of colliding clusters for a purely repulsive
collision and a cohesive collision when the initial tempera-
ture and the impact speed are T=0.02� and V=0.3	� /m.
From Fig. 3, we confirm that the contact duration for the
cohesive collision is longer than that of the repulsive colli-
sion �33�. During the restitution, we also observe the elonga-
tion of the clusters along the z axis in cohesive collisions,
while we can not observe such a phenomenon in repulsive
collisions. In both cases, the rotation of clusters is slightly
excited after a collision.

We first investigate the relation between the colliding
speed and the restitution coefficient for a weak attractive
case �c=0.2�. The cross points in Fig. 4 show the relation-
ship between the relative speed of impact scaled by the unit
	� /m, V̄�V /	� /m, and the restitution coefficient e. Sample
average is taken over 100 different initial conditions for each
speed and the error bar shows the standard deviation. From
Fig. 4 we find that the restitution coefficient has a peak
around the colliding speed V=0.2	� /m, which is attributed
to the reduction of e caused by the attractive force in the
lower impact speed. This tendency can also be observed in
cohesive collisions of macroscopic bodies �23,24�.

The solid line in Fig. 4 represents the theoretical predic-
tion of cohesive collisions between viscoelastic spheres �23�.
Here, we briefly summarize the theory of cohesive collisions
in Ref. �23�. Let us consider a head-on collision between
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FIG. 2. �a� Relaxation of kinetic temperature and �b� distribution

of speed of atoms after equilibration process. T̄ and v̄ are tempera-
ture and speed of “atom” scaled by units � and 	� /m, respectively. 80 9585 90

(a)

(b)

t = t =t = t =

FIG. 3. �Color online� Sequential plot of collisions for �a� c
=0.0 and �b� c=0.2 at t̄=80, 85, 90, and 95, where t̄ is time scaled
by unit � /	� /m.
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elastic spheres of radii R1 and R2, each of which has mass of
M1 and M2, respectively. The basic idea of their theory is to
solve the time evolution equation of the deformation ��t� of
the colliding spheres

��̈�t� + F���t�� = 0,

��0� = 0, �̇�0� = V , �4�

where � is the reduced mass �= �1 /M1+1 /M2�−1. ��t� is
described as the function of the radius of contact area a as

��a� =
a2

Reff
−	8�Da

3
with Reff = � 1

R1
+

1

R2
�−1

, �5�

so that Eq. �4� is rewritten as

�ä + �
���a�
���a�

ȧ2 +
F�a�
���a�

= 0, �6�

a�0� = ainit, ȧ�0� = V� d�

da


ainit

�−1

, �7�

where the prime denotes the differentiation with respect to a.
We adopt ainit= �8�DReff

2 /3�1/3 which is the contact radius
of the bottom plane of the upper cluster with 
�0.104� /�2 estimated from the calculation of the attractive
interaction between two clusters �see Appendix A�. We also
estimate D as D=3.28�10−3�3 /� from Young’s modulus Y
=454��−3 and Poisson’s ratio �=7.74�10−2 which are ob-
tained from another simulation �36�.

They assume that the force F�a� between cohesive
spheres comprises three kinds of forces: elastic force FH�a�
characterized by Hertzian contact theory �17,18�, dissipative
force Fdis�a� �6�, and cohesive Boussinesq force FB�a� de-
rived from the Johnson, Kendall, and Roberts theory �JKR�
theory �40�. Thus, the total force can be expressed by

F�a� = FH�a� − FB�a� + Fdis�a� . �8�

Here, the sum of the elastic force and the Boussinesq force is
given by

FH�a� − FB�a� =
a2

Reff
−	6�

D
a3/2 �9�

with the surface tension  and D= �3 /4���1−�1
2� /2Y1+ �1

−�2
2� /2Y2� with Poisson’s ratio �i and Young’s modulus Yi

for the cluster i=1,2. Following the idea in Ref. �23�, we
assume that the dissipative force is given by

Fdis�a� = Aȧ
�

�a
�FH�a� − FB�a�� , �10�

where A is a fitting parameter.
We solve Eq. �6� with the initial speed V ranging from

0.01�� /m�1/2 to 0.6�� /m�1/2 by the use of the fourth order
Runge-Kutta method to obtain the rebound speed which is
the speed when the contact radius a becomes less than asep
��3�DReff

2 /2�1/3 �23�. From the rebound speed for each
impact speed, we obtain the relationship between the restitu-
tion coefficient and the impact speed. In Fig. 4, we use A
=0.1�	m /� to draw the theoretical curve. In V�0.2	� /m,
the discrepancy between our numerical results �cross points�
and the theoretical result is large, which may be attributed to
the rotational rebounds of clusters after collisions. On the
other hand, the theoretical curve reproduces the results of
simulation which excludes rotation of clusters �open circles�
as will be explained later.

Here, let us briefly comment on the dependence of the
relative angle 
z on the numerical results. We have checked

z dependence of the restitution for purely repulsive colli-
sions, i.e., c=0.0 at T=0.02�. Figure 5 shows the relationship
between impact speeds and restitution coefficients for 
z=0,
� /6, � /3, and � /2. This figure indicates that the relation
between the impact speed and the restitution coefficient is
not largely affected by the initial orientation, although the
orientation around other axes may affect the relation. Thus,
we will analyze only the results obtained with the fixed ini-
tial orientation 
z=0.

B. Distribution of restitution coefficient

In this subsection, we investigate the frequency distribu-
tions of restitution coefficients for purely repulsive collisions
and cohesive collisions, respectively. Figure 6�a� shows the

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6

e

V

main peak
682 particles

theoretical curve

FIG. 4. Relationship between colliding speed and restitution co-

efficient for c=0.2. V̄ is the relative colliding speed scaled by unit
	� /m.
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histogram of the restitution coefficient for purely repulsive
collisions �c=0.0�. To obtain this result, we take 5000
samples at the fixed impact speed V=0.02	� /m. From Fig.
6�a�, the frequency distribution can be approximated by the
Gaussian �solid line� for purely repulsive collisions.

On the other hand, Fig. 6�b� shows the frequency distri-
bution of the restitution coefficient for cohesive collisions
�c=0.2�. To obtain this result, we take 995 samples at the
fixed impact speed V=0.1	� /m. In Fig. 6�b�, we find the
existence of the two peaks around e=0.448 and e=0.656,
respectively, except for the main peak around e=0.982. From
the check of simulation movies, the collisions around these
small peaks are produced by rotations after the collisions,
while the most of bounces are not associated with rotations
in the vicinity of the main peak around e=0.982. It is rea-
sonable that the excitation of macroscopic rotation lowers
the restitution coefficient.

Here, let us make another comparison of our simulation
result with the theoretical curve drawn in Fig. 4. The open
circles in Fig. 4 are the mean values obtained by the data
around the main peak for each impact speed to remove the
effects of rotational bounces. It is obvious that the theory has
a better fitting curve of the data when we remove rotational
bounces.

We shall comment on the fitting function of the main
peak. Figure 6�b� shows that the distribution around the main
peak has an asymmetric profile, so that the Gaussian function
may fail to fit the tail parts of the main peak. Figure 7 shows
the semilog plot of the simulation data around the main peak,
where F�e� is the frequency of e. The reasonable fitting
curves are represented by the solid lines, where ln F�e�
= �19.6�1.9�e+ �−14.7�1.8� for e�0.982 and ln F�e�
= �−127�28�e+ �130�28� for e�0.982, respectively. Thus,

the distribution of restitution coefficients can be approxi-
mated by a combination of the double-exponential functions
when the rotation is not excited after impacts. A similar ten-
dency has also been observed in a recent experiment and a
recent simulation of macroscopic collisions �41�.

C. Phase diagram of restitution coefficient

As discussed in the previous subsection, some samples of
the restitution coefficient exceeds unity even for cohesive
collisions. We can guess that most of colliding clusters coa-
lesce when we use the collisional model with c=1. Thus, it is
important to know what process actually occurs after a col-
lision when the impact speed or the cohesive parameter c is
given. In this subsection, we investigate the emergence prob-
ability of four modes of the collisions �i� coalescence, �ii�
bouncing, �iii� normal collision with e�1, and �iv� anoma-
lous collision with e�1. The coalescence �i� and the bounc-
ing �ii� can take place only when the attractive interaction
between the colliding clusters exists. Indeed, the bouncing
occurs as the result of trapping by the potential well, if the
rebound speed is not large enough �42�.

Figure 8�a� shows the phase diagram which is obtained
under the fixed colliding speed V=0.02	� /m, where P rep-
resents the probability to observe each mode. This phase
diagram shows that the regions for the modes �iii� and �iv�
decrease with the increase of c. In the strong attractive case
c�0.6, we cannot observe rebound modes �ii�, �iii�, and �iv�.
Here, we find that the anomalous impact can be observed for
cohesive collisions with c�0.4.

We also categorize collisions into four modes as a func-
tion of the impact speed under the fixed cohesive parameter
c=0.2 �Fig. 8�b��. Here, we find that the probability to
emerge the modes �i� and �ii� decreases with the increase of
the impact speed. In addition, the anomalous impact can be
observed within the range of impact speed 0.02
	V / �� /m�1/2	0.1. It is interesting that Fig. 8�b� for V
�0.04	� /m is almost the mirror symmetric one of Fig. 8�a�
for c�0.2, which suggests that the cohesive parameter plays
a role of the impact speed.

Here let us reproduce the results of our simulation quali-
tatively by a phenomenology. Purely repulsive collisions, as
we expect from Fig. 6�a�, the probability density distribution
of rebound speed V� can be approximated by a Gaussian
function
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FIG. 6. Histograms of restitution coefficients for �a� c=0.0, V
=0.02	� /m and �b� c=0.2, V=0.1	� /m. The solid line in �a� is the
Gaussian fitting of the data.
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p�V�� =
1

	��
exp�−

�V� − Vm�2

�
� . �11�

Thus, for given impact speed V, we can use Eq. �11� where
Vm and � in Eq. �11� are fitting parameters. Then, we calcu-
late the probability to exceed the escape speed V* �43� from
the attractive potential field ��r��−4�c�r /��−6 under the
given V�. Here the escape speed V* of a rebounded cluster
may be given by

V*/	�/m = 	2��x*/��/�� , �12�

where x*= �2 /c�1/6� at which the potential takes the mini-
mum value. For example, the escape speed becomes V*

=0.015�� /m�1/2 in the case of c=0.2.
Thus, from integrating the probability densities of V�, the

probabilities to observe modes �i�, �iii�, and �iv� are, respec-
tively, given by

P�i� = �
−�

V*

p�V��dV� =
1

2�1 − erf�Vm − V*

	�
�� , �13�

P�iii� = �
V*

V
p�V��dV� =

1

2�1 − erf�Vm − V
	�

�� − P�i�,

�14�

P�iv� = �
V

�

p�V��dV� = 1 − P�i� − P�iii�, �15�

where erf�x� is the error function erf�x���−�
x exp�−t2�dt.

Here we ignore the distinction between the mode �i� and the
mode �ii�, because the most of bouncing clusters eventually
coalesce after some numbers of collisions.

Figures 9�a� and 9�b� show the probability diagrams ob-
tained from Eqs. �13�–�15�. To draw Fig. 9�b�, we adopt
V*=0.018	� /m which is slightly larger than the calculated
value V*=0.015	� /m by Eq. �12� for c=0.2. Our phenom-
enology qualitatively reproduces the diagrams obtained by
the simulation as in Figs. 8�a� and 8�b�, although there are
some quantitative differences between the simulation and the
phenomenology. Indeed, the probability to appear the mode
�iv� in the phenomenology decreases with the increase of
V	� /m as in Fig. 9�b�, but this tendency cannot be observed
in the simulation in Fig. 8�b�.

IV. DISCUSSION

Let us discuss our results. We, mainly, discuss how the
restitution coefficient depends on the cluster size in this sec-
tion. Figure 10 shows the relationship between the relative
colliding speed of clusters and the restitution coefficient with
different sizes of 236 atoms �C236�, 433 atoms �C433�, and
682 atoms �C682�, respectively, where we use the data ob-
tained by the fixed parameters c=0.2 and T=0.02�. As can
be seen in Fig. 10, the restitution coefficients satisfies the
scaling in which e�R /��0.317 is a universal function of the
impact speed, where R is the radius of each cluster. To obtain
the scaling exponent, we first calculate the standard deviation
for each rebound speed under the fixed value of the expo-
nent. Next, we search the value of the exponent such that the
maximum value of the standard deviations has a minimum
value. To draw the solid curve in Fig. 10, we solve Eq. �6�
with the fitting parameter A=0.1�	m /� for C682 with the aid
of its radius Reff=3.23�. This is interesting finding from our
simulation which has not been predicted by the quasistatic
theory of cohesive collisions for macroscopic bodies �23�.

From a simple phenomenology, we can understand that
the restitution coefficient depends on the radius. However,
the phenomenology predicts that e�R /��1/2 satisfies a scaling
relation �see Appendix B�. The discrepancy between the phe-
nomenology and the numerical observation indicates that our
over-simplified theory is insufficient. We will need a more
sophisticated theory to explain the exponent.

We also simulate collisions between larger clusters than
C682 by the use of C1055 and C1466. Figure 11�a� is the rela-
tionship between the impact speed and the restitution coeffi-
cients in the case of c=0.0 under the initial temperature T
=0.02�. The squares, plus points, and circles show the aver-
aged data of C682, C1055, C1466, respectively. We take 10
samples for both C1055 and C1466 while 100 samples for C682.
Here we do not find any systematic relationship between the
impact speed and the restitution coefficients in the cases of
C1055 and C1466. This can be attributed to the surface insta-
bility of the clusters arising from the weak attraction between
“atoms.”

It is known that the instability of the spherical shape and
the plastic deformation in a cluster cause the increase of the
internal temperature of the cluster �33,34�. We numerically
performed free flights of cluster by the use of C1055 to check
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FIG. 9. Probability diagrams from our theoretical argument for
�a� V=0.02	� /m and �b� c=0.2.
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the time evolution of the internal temperature of the cluster.
Figure 11�b� shows the time evolution of the temperature
inside the cluster C1055 after giving the translational speed
V=0.07	� /m and the initial temperature T=0.02�. Here we
find the temperature increase during the free flight up to
around T=0.08�. Thus, we conclude that the maximum num-
ber of “atom” to reproduce the theory of cohesive collision is
682 in our system.

We try to estimate the critical radius theoretically on the
basis of the argument of capillary instability of elastic drop-
lets �see Appendix C� �44�, but our oversimplified theory
predicts that any elastic surface of spheres are unstable under
the gravity. We should note that this calculation is based on
theory of elasticity with zero shear modulus �Poisson’s ratio
is equal to −1�. The calculation suggests that �i� we may not
use theory of elasticity or �ii� zero shear modulus is unreal-
istic. We will, at least, need to discuss the capillary instability
under the full set of elastic equations. From these arguments,
we regard C682 as the maximum size to reproduce the quasi-
static theory of cohesive collisions in our modeling.

Although our simulation mimics impact phenomena of
small systems subject to large thermal fluctuations, we
should address that our model with small c may not be ad-
equate for the description of many of realistic collisions of
nanoclusters, where the cohesive interaction between clusters
often prohibits the rebound in the low-speed impact. Namely,
the corresponding value of the cohesive parameter is large in
many of actual situations. However, nanoscale impacts can
be realized experimentally by the using the surface coated
nanoclusters. For example, it has been demonstrated that hy-
drogen coated Si nanoparticles exhibit the weak attraction by
H atoms on the surface �34,35�. We believe that our model
captures the essence of such a system. For realistic simula-
tions, we may need to carry out another simulation of the
collision of H-passivated Si clusters by introducing suitable
empirical potentials. As an additional remark, we should in-
dicate that it is difficult to control the colliding speed and the
initial rotation of the cluster in actual situations because the
macroscopic motion of one cluster is also affected by ther-
mal fluctuations.

V. CONCLUSION

In conclusion, we have performed molecular dynamics
simulations to investigate the behaviors of colliding clusters

and the relationship between the restitution coefficient and
the impact speed. The results of our simulations have re-
vealed that some aspects of the relationship can be under-
stood by the quasistatic theory for cohesive collisions �23�.
In addition, we have drawn the phase diagram of the restitu-
tion coefficient in terms of the impact speed and the cohesive
parameter and explained them by a simple phenomenology.
To clarify the mechanism of the emergence of the anomalous
impact, it may need further investigation about the internal
state of clusters during collision such as stress and modal
analyses.
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APPENDIX A: CALCULATION OF SURFACE TENSION

In this appendix we explain how we calculate the surface
tension  used to draw the theoretical curve in Fig. 4 �21�.
Let us assume that two identical clusters are in plane-to-
plane contact with each other. When those clusters are lo-
cated by the separation d, the surface energy per unit area W
is given by �21�

W �
B

12�d0
2�1 −

d0
2

d2� , �A1�

where B is the Hamaker constant B�4�2�c�6�2 with the
cohesive parameter c and the number density � of each clus-
ter. In our model, we use the number density becomes �
=0.4�−3 and d0�0.4�.

The surface tension  is equal to the energy per unit area
to separate the two contacting plane to infinity. Thus, we
obtain  as

 =
B

24�d0
2 � 0.0261 �

4�

�2 = 0.1044
�

�2 . �A2�

APPENDIX B: DEPENDENCE OF e ON R

Let us derive a scaling relation between the restitution
coefficient and the radius of cluster. Our assumption is that
�i� the energy dissipation during a collision is originated
from the sum of the viscous force and the Boussinesq force,
�ii� energy dissipation from the Boussinesq force is approxi-

0.8

0.9

1

0.02 0.04 0.06 0.08 0.1

e

V
(a)

0.02

0.04

0.06

0.08

0 1000 2000 3000

T

Simulation Step

C1055

(b)

C682

C1055

C1466

FIG. 11. �a� Relation between impact speed and restitution co-
efficient in cases of C682, C1055, and C1466. �b� Time evolution of
internal temperature of cluster C1055 in its free flight after initial
equilibration to T=0.02�.
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mately given by the work during the detachment process of
two coalesced clusters.

Let us first estimate the energy dissipation caused by the
surface tension. A pair of colliding clusters is partially coa-
lesced as shown in Fig. 12, where we assume that the defor-
mation of two spheres are negligible, and contacted state can
be characterized by a simple cut of the deformed region. Let

 be the angle around the center of the upper sphere ranging
from −
0 to 
0 under the assumption a small 
0. From this
figure, the surface area of a cut hemisphere is approximately
given by �R2
0

2=�R� with the deformation ��
0
2R. Thus,

the work needed to pull off two spheres is

W � 2�R�max � ��0

Y
�2/5

R2V4/5, �B1�

where we use the estimation �max� ��0R3 /Y	R�2/5V4/5

���0 /Y�2/5RV4/5 on the basis of the theory of elasticity,
where �0 is the density �18�.

On the other hand, the energy dissipation of repulsive
spheres is given by �6�

Eloss
dis � �0

3/5�Y2/5R2V11/5, �B2�

where � is time scale of the dissipation. From the combina-
tion of two terms in Eqs. �B1� and �B2�, we obtain the ex-
pression of the total energy loss during a collision

Eloss = Eloss
dis − W � R2�c1V11/5 − c2V4/5� , �B3�

where c1��0
3/5�Y2/5 and c2���0 /Y�2/5. Since Eq. �B3�

should be balanced with �0R3V2�1−e2�, we obtain

R�1 − e2� �
1

�0
�c1V1/5 − c2V−6/5� . �B4�

Thus, our phenomenology suggests that R1/2e is independent
of the radius of the colliding spheres.

APPENDIX C: INSTABILITY OF AN ELASTIC DROPLET

In this appendix we investigate the instability of the sur-
face profile of clusters on the assumption that the internal
modes of the cluster are expressed by those of an isotropic
elastic sphere. When the shear stress can be ignored, the
stress tensor �ij can be written as

�ij = K � · u�ij , �C1�

where K is the bulk modulus, �ij is Kronecker delta, and u is
the strain. Thus, the equation of motion in the bulk becomes

�ü = ��K � · u� = − �p , �C2�

where � is the density and p�−K� ·u is the effective pres-
sure. Thus, the problem can be mapped onto a problem of
perfect fluid. Thus, the dispersion relation is linearized equa-
tion R�
 ,� , t�=R0+��
 ,� , t� can be written as

�l
2 =

l�l − 1��l + 2�
�R0

3 , �C3�

as in the case of a liquid droplet �44�, where l is the index of
Legendre polynomial.

When we introduce the gravity in this perfect fluid model,
the scalar potential � defined by v=�� satisfies

�t� + P +
1

2
v2 + gz = f�t� , �C4�

where �t is the time derivative, P=�dp /��p�, and f�t� is an
arbitrary function of time, g and z are the gravitational ac-
celeration and the relative vertical position from the center of
mass of the sphere. Choosing f�t� satisfying f�t�= p0+� 1

R1

+ 1
R2

� with the surface tension , curvatures R1 and R2, Eq.
�C4� can be rewritten as

��̈ =


R0
2�2

��

�r
− ��
,��

��

�r
� + �g cos 


��

�r
, �C5�

where ��
 ,��=−� 1
sin 


�
�
 �sin 
 �

�
 �+ 1
sin2 


�2

��2 �. To derive Eq.

�C5� we have used �̇=�, v= u̇=��, and �̇=vr=�� /�r at
r=R0.

By using the expansion � in terms of rl and the spherical
harmonic function Yl,m�
 ,��, we may obtain

�l,m
2 =



�R0
3 l�l − 1��l + 2� −

lg

R0
�	 �l − m��l + m�

�2l − 1��2l + 1�

+	�l − m + 1��l + m + 1�
�2l + 1��2l + 3� � , �C6�

where we have used the formula

cos 
Ylm =	�l − m + 1��l + m + 1�
�2l + 1��2l + 3�

Yl+1,m

+	 �l − m��l + m�
�2l − 1��2l + 1�

Yl−1,m. �C7�

Therefore, �n,l,m becomes complex, if the radius exceeds the
critical radius

R θ0

ξ/2
θ

FIG. 12. Schematic figure of contacting identical spheres.

HIROTO KUNINAKA AND HISAO HAYAKAWA PHYSICAL REVIEW E 79, 031309 �2009�

031309-8



R0,c
�l,m� = � �l − 1��l + 2�

�g�	 �l − m��l + m�
�2l − 1��2l + 1�

+	�l − m + 1��l + m + 1�
�2l + 1��2l + 3� � �

1/2

. �C8�

Equation �C8� implies that the mode with l=1 is always unstable for the perturbation. Thus, we conclude that an accelerated
elastic sphere is unstable, which is similar to the instability of a raindrop of the perfect fluid because the neutral mode l=1 does
not have any recovering force.
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